Learning Objectives

Discuss the nature of Cardiorenal Syndrome and its pathophysiology connection with diabetes

Review the prevalence of diabetes and kidney diseases in the U.S.

Examine the latest guidelines from leading research groups on this topic

Apply learnings to Cardiorenal Syndrome case studies
Topics Covered

| Overview | • What is cardiorenal syndrome?
| | • Pathophysiology of how diabetes can impact cardiorenal syndrome |
| The Stats | • Diabetes in the U.S.
| | • Chronic kidney disease in the U.S. |
| Cardiorenal Syndrome | • Diabetes complications: kidney disease
| | • Diabetes complications: cardiovascular disease |
| Guidelines | • American Diabetes Association (ADA)
| | • American Heart Association/American College of Cardiology (AHA/ACC)
| | • National Kidney Foundation |
| Case Studies | • Utilizing what we've learned |
What Is Cardiorenal Syndrome?

There are many interactions between the heart and kidney. The interaction is bidirectional.

This interaction can induce acute or chronic dysfunction:

1. Heart and kidneys, or
2. In either organ
What Is Cardiorenal Syndrome?

There are many interactions between heart disease and kidney disease.

The clinical importance of such relationships is illustrated by the following observations:

- Mortality is increased in patients with heart failure (HF) who have a reduced glomerular filtration rate (GFR).
- Patients with chronic kidney disease (CKD) have an increased risk of both atherosclerotic cardiovascular disease and heart failure.
- Acute or chronic systemic disorders can cause both cardiac and renal dysfunction.
Understanding the Five Types of Cardiorenal Syndrome

The different interactions that can occur led to the following classification of CRS that was proposed by Ronco et al.:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE 1</td>
<td>Acute heart failure (HF) results in acute kidney injury (previously called acute renal failure).</td>
</tr>
<tr>
<td>TYPE 2</td>
<td>Chronic cardiac dysfunction (e.g., chronic HF) causes progressive chronic kidney disease (CKD); previously called chronic renal failure.</td>
</tr>
<tr>
<td>TYPE 3</td>
<td>Abrupt and primary worsening of kidney function due, for example, to renal ischemia or glomerulonephritis causes acute cardiac dysfunction, which may be manifested by HF.</td>
</tr>
<tr>
<td>TYPE 4</td>
<td>Primary CKD contributes to cardiac dysfunction, which may be manifested by coronary disease, HF, or arrhythmia.</td>
</tr>
<tr>
<td>TYPE 5</td>
<td>Acute or chronic systemic disorders (e.g., sepsis or diabetes mellitus) that cause both cardiac and renal dysfunction.</td>
</tr>
</tbody>
</table>

Cardiorenal Syndrome in the Context of Cardiovascular Disease

Risk Factors:
- Dyslipidemia
- Hypertension
- Diabetes
- Smoking
- Obesity

Coronary Artery Disease
- Coronary Thrombosis
- Atherosclerosis

Myocardial Infarction
- Neurohormonal Activation
- Remodeling

Arrhythmias and Loss of Muscle

Sudden Cardiac Death

Ventricular Enlargement
- Congestive Heart Failure
- End-stage Heart Failure
- Chronic Kidney Disease

Reference: Adapted from the brochure “Biomarkers: Covering the Continuum of Cardiovascular Disease.”
Cardiorenal Syndrome CVD Context: The Important Role of Laboratory Testing

Risk Assessment

- **Plaque Instability/Inflammation**
 - hsCRP
 - Lp(a)

- **Arteriosclerosis/Inflammation**
 - hsCRP
 - Homocysteine
 - Fibrinogen

- **Dyslipidemia**
 - Total cholesterol
 - HDL-cholesterol
 - LDL-cholesterol
 - Triglyceride
 - Apolipoprotein B
 - Apolipoprotein A-1
 - Lipoprotein (a)

- **Diabetes**
 - Glucose
 - HbA1c

Acute Phase

- **Myocardial Infarction**
 - Cardiac troponin
 - CK-MB Mass

- **Anticoagulation Therapy Monitoring**
 - PT
 - aPTT
 - Platelet-function testing
 - Anti-FXa assay for heparin

- **Heart Tissue Remodeling**
 - *Galectin-3
 - ST2

- **Heart Failure**
 - BNP
 - NT-proBNP

- **Kidney Disease**
 - Microalbumin
 - Creatinine
 - Cystatin C
 - Albumin

*Galectin-3 assay is under development for the ADVIA Centaur® Immunoassay Systems. Not available for sale. Product availability varies by country.

Reference: Adapted from the brochure “Biomarkers: Covering the Continuum of Cardiovascular Disease.”
Learning Objectives

Overview
- What is cardiorenal syndrome?
- Pathophysiology of how diabetes can impact cardiorenal syndrome

The Stats
- Diabetes in the U.S.
- Chronic kidney disease in the U.S.

Cardiorenal Syndrome
- Diabetes complications: kidney disease
- Diabetes complications: cardiovascular disease

Guidelines
- American Diabetes Association (ADA)
- American Heart Association/American College of Cardiology (AHA/ACC)
- National Kidney Foundation

Case Studies
- Utilizing what we've learned
Diabetes Mellitus

- A metabolic disease in which the body’s blood glucose levels become extremely elevated
- Develops when the body either:
 - Stops responding to insulin, or
 - Stops producing enough insulin
- Types of diabetes:
 - Type 1 and type 2
 - Gestational diabetes
 - Other (e.g., genetic defects in β-cell function, genetic defects in insulin action, diseases of the exocrine pancreas such as cystic fibrosis, drug- or chemically induced)
U.S. Statistics for Diabetes Mellitus Are Staggering

Did you know?

29.1 million people have diabetes.

…a 3.3 million increase in 3 years since 2011 CDC report.

21.0 million people diagnosed.

…and 8.1 million people undiagnosed—don’t know they have it.

We spend $245 billion total on direct and indirect diabetes costs.
Chronic Kidney Disease (CKD)

- When kidneys lose their ability to filter effectively, toxic metabolites build up and cause multi-organ damage.
- End-stage renal disease (ESRD) is very serious. A person with ESRD needs to have a kidney transplant or dialysis treatments.
- The two major forms of dialysis are hemodialysis and peritoneal dialysis.
Mortality of Patients on Renal Replacement (Dialysis and Kidney Transplant)

• Among dialysis patients age 65 and older, mortality is twice as high as for patients who have diabetes.

• Rates of mortality in the prevalent population have declined nearly 25% over the last two decades and 19% since 1999.

• However, today only 50% of dialysis patients, and 82% of those who receive a preemptive transplant, are still alive 3 years after the start of ESRD therapy, illustrating the extreme vulnerability of these patients when compared to the general population.

Kidney Disease: “Kidneys Don’t Hurt”

• Patients with kidney disease do not exhibit overt symptoms.
• Physicians typically do not see signs during an exam until the disease is advanced.
• We need IVD tests to diagnose kidney disease and resolve the “silence.”
Evidence of Kidney Disease: The Symptoms

- Changes in urination
- Swelling of extremities or face
- Fatigue
- Skin rash or itching
- Metallic taste in mouth/ammonia breath
- Nausea and vomiting
- Shortness of breath
- Feeling cold
- Dizziness and trouble concentrating
- Leg/flank pain
Did you know?

26 million Americans have kidney disease and don’t know.

One in three American adults are at risk of developing kidney disease.

Medicare spending rose 5.2% in 2012 to $507 billion.

Diabetes is listed as the primary cause of kidney failure in 44% of all new cases.

49,677 people began treatment for kidney failure due to diabetes.

28,924 people with kidney failure due to diabetes are living on chronic dialysis or with a kidney transplant.

Learning Objectives

| Overview | • What is cardiorenal syndrome?
• Pathophysiology of how diabetes can impact cardiorenal syndrome |
|----------|--|
| The Stats | • Diabetes in the U.S.
• Chronic kidney disease in the U.S. |
| Cardiorenal Syndrome | • Diabetes complications: kidney disease
• Diabetes complications: cardiovascular disease |
| Guidelines | • American Diabetes Association (ADA)
• American Heart Association/American College of Cardiology (AHA/ACC)
• National Kidney Foundation |
| Case Studies | • Utilizing what we've learned |
Overall, What Are the Potential Complications of Diabetes?

- Many diabetics already have some of the complications associated with diabetes at the time of diagnosis.
- Major organs of concern:

<table>
<thead>
<tr>
<th>Eye</th>
<th>Nerves</th>
<th>Kidney</th>
<th>Heart and Blood Vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetic retinopathy</td>
<td>Diabetic neuropathy</td>
<td>Diabetic nephropathy</td>
<td>Atherosclerosis, hypertension, cardio- and cerebrovascular disease</td>
</tr>
</tbody>
</table>

![Eye Image](image1)

![Nerves Image](image2)

![Kidney Image](image3)

![Heart Image](image4)
How Does Diabetes Cause Kidney Disease?

- In high-risk groups, the **glomerulus** of the kidney is damaged, causing increased porosity, which eventually prevents them from filtering blood effectively.

- The gradual failing of kidney function results in end-stage kidney failure (ESRD).

Source: www.patient.co.uk/health/diabetic-kidney-disease-leaflet
How Does Diabetes Cause Kidney Disease?

- Consistent hyperglycemia causes abnormal glycosylation of cellular proteins, forming advanced glycation end-products (AGEs).
- AGEs induce abnormal changes in the glomerulus, affecting kidney filtration.
- Abnormalities in extracellular proteins damaging the glomerular basement membrane and capillary loops also occur.
- Formation of oxygen radicals can further damage cells.
- Linkage of proteins in the glomeruli triggers localized scarring, preventing the kidney from effectively filtering blood.

An Epidemic—the U.S. Statistics for CKD and Diabetes

Did you know?

55.1 million Americans afflicted with CKD and diabetes.

One in three American adults are at risk of developing kidney disease.

We spend $752 billion total on CKD and diabetes, and growing annually.

One out of three people with Type 2 diabetes do not know they have it.

Diabetic Complications: Heart Disease and Stroke

Comparison of Diabetic to General Population

- Heart-disease death rates: \textbf{2 to 4x higher}
- Risk of stroke: \textbf{2 to 4x higher}
- 75\% of diabetics treated for high blood pressure
- 68\% of diabetes-related death certificates in 2004 noted heart disease for those >65 years old
- 16\% of diabetes-related death certificates in 2004 noted stroke for those >65 years old

Diabetes and Heart Failure: Current Knowledge

• Numerous trials (e.g., SOLVD, HOPE, and CHS) have identified diabetes as a major risk for development of heart failure.

• Diabetes can cause overt heart failure, independent of atherosclerosis or hypertension, via the development of a diabetic cardiomyopathy.

• There is indirect evidence that diabetes frequently causes abnormal heart function, even in the absence of other risk factors.

• Multiple mechanisms have been implicated in the causation of heart failure.

Heart Failure Is More Common in Patients with Type 2 Diabetes

Glycemic Control and Risk of Development of HF in Diabetes

HF = heart failure

Learning Objectives

Overview
- What is cardiorenal syndrome?
- Pathophysiology of how diabetes can impact cardiorenal syndrome

The Stats
- Diabetes in the U.S.
- Chronic kidney disease in the U.S.

Cardiorenal Syndrome
- Diabetes complications: kidney disease
- Diabetes complication: cardiovascular disease

Guidelines
- American Diabetes Association (ADA)
- American Heart Association/American College of Cardiology (AHA/ACC)
- National Kidney Foundation

Case Studies
- Utilizing what we've learned
First, Why So Many Guidelines?

In 2011, the Institute of Medicine (IOM) defined clinical practice guidelines:

“Statements that include recommendations intended to optimize patient care that are informed by a systematic review of evidence and an assessment of the benefits and harms of alternative care options.”

Trustworthy guidelines should:

• Be based on a systematic evidence review developed by a panel of multidisciplinary experts.
• Provide a clear explanation of the logical relationships between alternative care options and health outcomes.
• Provide ratings of both the quality of evidence and the strength of the recommendations.

Source: www.nhlbi.nih.gov/guidelines/about.htm
May 2014 National Kidney Foundation KDOQI Commentary: Guidelines for the Evaluation and Management of CKD

- Spot/untimed urine sample—early morning void.
 - No need for 24-hour collections

- Tests to be performed in preferred order:
 - **Albumin:creatinine ratio (ACR)**
 - Semiquantitative results using urinalysis strip
 - Reflex quantitative
 - If ACR positive, confirm ACR ≥30 mg/g (≥3 mg/mmol) on a random urine using an early morning collection
 - **Protein:creatinine ratio (PCR)**
 - Total protein (automated reading)
 - Total protein (manual reading)

- Assess GFR and albuminuria at least annually for patients with CKD and more often for those at higher risk of progression.

- Test cystatin C in adults with eGFR 45–50 mL/min/1.74 m² who do not have markers of kidney damage, if CKD confirmation is required.
Chronic Kidney Disease Guidelines

<table>
<thead>
<tr>
<th>ROLE OF:</th>
<th>CKD</th>
<th>CKD and Diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove need for 24-hour</td>
<td>Remove need for 24-hour</td>
<td>Microalbumin</td>
</tr>
<tr>
<td>urine collection</td>
<td>urine collection</td>
<td>testing: ACR ratio</td>
</tr>
<tr>
<td>Preferred urinalysis</td>
<td>Preferred urinalysis</td>
<td>testing: Microalbumin</td>
</tr>
<tr>
<td>testing: ACR ratio</td>
<td>testing: ACR ratio</td>
<td>testing: ACR ratio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why Is ACR Preferred over PCR and Total Protein?

- Albumin:creatinine ratio (ACR) is:
 - The most sensitive and specific measure of kidney damage
 - An accurate predictor of kidney and cardiovascular risk
 - A sound tool to show progression of CKD
 - More precise at low, diagnostically important concentrations

- There are ongoing standardization efforts; protein is difficult to standardize.

- Untimed collections are difficult to standardize; hence results could be misleading.

- **First morning void is preferred**: concentration correlates well with 24-hour excretion and has low intra-individual variability.

- Ratios utilizing creatinine account for the variability of urine albumin or protein concentrations due to urine concentration.

Unlike albumin or protein, creatinine is excreted into urine at a constant rate.

Value of a ratio test: Accounts for urine concentration or dilution.
Screening for Microalbuminuria in Patients with Diabetes

<table>
<thead>
<tr>
<th>GFR (mL/min)</th>
<th>CKD Stage*</th>
<th>Normoalbuminuria</th>
<th>Microalbuminuria</th>
<th>Macroalbuminuria</th>
</tr>
</thead>
<tbody>
<tr>
<td>>60</td>
<td>1 + 2</td>
<td>At risk†</td>
<td>Possible DKD</td>
<td>DKD</td>
</tr>
<tr>
<td>30–60</td>
<td>3</td>
<td>Unlikely DKD‡</td>
<td>Possible DKD</td>
<td>DKD</td>
</tr>
<tr>
<td><30</td>
<td>4 + 5</td>
<td>Unlikely DKD‡</td>
<td>Unlikely DKD</td>
<td>DKD</td>
</tr>
</tbody>
</table>

*Staging may be confounded by treatment because RAS blockade could render microalbuminuric patients normoalbuminuric and macroalbuminuric patients microalbuminuric. Thus, although staging is done according to the current level of albuminuria for practical reasons, the implication of the staging undoubtedly is affected by past history. Therefore, when available, data before the initiation of therapy should be considered for classification purposes.

†Because patients with diabetes often have elevated GFR in the early years after diagnosis, GFR less than 90 mL/min may represent a significant loss of function. Kidney biopsy in these patients can show histological evidence of DKD. Patients with diabetes at increased risk of DKD include those with poor glycemic control, longer duration, hypertension, retinopathy, high-normal albuminuria, nonwhite race, family history of hypertension, CVD, type 2 diabetes, and DKD.

‡Reduction in GFR in patients with diabetes and normoalbuminuria is well described in both type 1 and type 2 diabetes; kidney biopsy in such patients often shows evidence of diabetic glomerulopathy. However, in the absence of histological evidence, these patients should be considered to have diabetes and CKD, which may require further investigation.

Abbreviations: DKD = diabetic kidney disease; RAS = renin-angiotensin system; CVD = cardiovascular disease.

American Diabetes Association (ADA): 2015 Diabetes Diagnostic Criteria

<table>
<thead>
<tr>
<th></th>
<th>Hemoglobin A1c (A1C)</th>
<th>Fasting Plasma Glucose Test (FPG)</th>
<th>2-Hour Oral Glucose Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptable</td>
<td>≤5.6%</td>
<td>Below 100 mg/dL</td>
<td>Below 140 mg/dL</td>
</tr>
<tr>
<td>Prediabetes</td>
<td>5.7–6.4%</td>
<td>100–125 mg/dL (IFG)</td>
<td>140–199 mg/dL (IGT)</td>
</tr>
<tr>
<td>Diabetes*</td>
<td>≥6.5%</td>
<td>126 mg/dL or above</td>
<td>200 mg/dL or above</td>
</tr>
</tbody>
</table>

*Or in a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose ≥200 mg/dL (11.1 mmol/L).

AHA Recommendations

<table>
<thead>
<tr>
<th>Treatment Locations</th>
<th>WHY?</th>
<th>Recommended Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospitalized Acute</td>
<td>DIAGNOSIS</td>
<td>Should be Performed</td>
</tr>
<tr>
<td></td>
<td>PROGNOSIS</td>
<td></td>
</tr>
<tr>
<td>Outpatient POC</td>
<td>THERAPY DECISIONS</td>
<td>Reasonable to be Performed</td>
</tr>
<tr>
<td></td>
<td>POTENTIAL USE</td>
<td>May be Considered to be Performed</td>
</tr>
</tbody>
</table>
AHA Recommendations: Hospitalized/Acute

<table>
<thead>
<tr>
<th>WHY?</th>
<th>Recommended Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGNOSIS</td>
<td>Class I (Should be Performed)
Measurement of BNP or NT-proBNP is useful to support clinical judgment for the diagnosis of acutely decompensated HF, especially in the setting of uncertainty for the diagnosis.</td>
</tr>
<tr>
<td>PROGNOSIS</td>
<td>Measurement of BNP or NT-proBNP and/or cardiac troponin is useful for establishing prognosis or disease severity in acutely decompensated HF.</td>
</tr>
<tr>
<td>POTENTIAL USE</td>
<td>Class IIb (May be Considered to be Performed)
The usefulness of BNP- or NT-proBNP-guided therapy for acutely decompensated HF is not well established.</td>
</tr>
<tr>
<td></td>
<td>Measurement of other clinically available tests such as biomarkers of myocardial injury or fibrosis may be considered for additive risk stratification in patients with acutely decompensated HF.</td>
</tr>
</tbody>
</table>

AHA Recommendations: Outpatient/Point-of-care Treatment

WHY?

<table>
<thead>
<tr>
<th>WHY?</th>
<th>Recommended Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAGNOSIS</td>
<td>Class I (Should be Performed)
In ambulatory patients with dyspnea, measurement of BNP or NT-proBNP is useful to support clinical decision making regarding the diagnosis of HF, especially in the setting of clinical uncertainty.</td>
</tr>
<tr>
<td>PROGNOSIS</td>
<td>Measurement of BNP or NT-proBNP is useful for establishing prognosis or disease severity in chronic HF.</td>
</tr>
<tr>
<td>THERAPY DECISIONS</td>
<td>Class IIa (Reasonable to be Performed)
BNP- or NT-proBNP-guided HF therapy can be useful to achieve optimal dosing of guideline-directed medical therapy (GDMT) in select clinically euvolemic patients followed in a well-structured HF disease management program.</td>
</tr>
<tr>
<td>POTENTIAL USE</td>
<td>Class IIb (May be Considered to be Performed)
The usefulness of serial measurement of BNP or NT-proBNP to reduce hospitalization or mortality in patients with HF is not well established.

Measurement of other clinically available tests such as biomarkers of myocardial injury or fibrosis may be considered for additive risk stratification in patients with chronic HF.</td>
</tr>
</tbody>
</table>

AHA and ADA Guidelines: CVD Prevention in Type 2 Diabetes

A1C (Hemoglobin A1C, HbA1c)
<7% is optimal

Blood Pressure
130/80 to 140/90 mm Hg

Cholesterol (Lipids, HDL, LDL)
accent shifted to management of LDL

Learning Objectives

| Overview | • What is cardiorenal syndrome?
| | • Pathophysiology of how diabetes can impact cardiorenal syndrome |
| The Stats | • Diabetes in the U.S.
| | • Chronic kidney disease in the U.S. |
| Cardiorenal Syndrome | • Diabetes complications: kidney disease
| | • Diabetes complications: cardiovascular disease |
| Guidelines | • American Diabetes Association (ADA)
| | • American Heart Association/American College of Cardiology (AHA/ACC)
| | • National Kidney Foundation |
| Case Studies | • Utilizing what we've learned |
Cardiorenal Syndrome CVD Context:
The Important Role of Laboratory Testing

Risk Assessment

- Plaque Instability/Inflammation
 - hsCRP • Lp(a)
- Arteriosclerosis/Inflammation
 - hsCRP • Homocysteine
 - Fibrinogen
- Dyslipidemia
 - Total cholesterol
 - HDL-cholesterol
 - LDL-cholesterol
 - Triglyceride
 - Apolipoprotein B
 - Apolipoprotein A-1
 - Lipoprotein (a)
- Diabetes
 - Glucose
 - HbA1c

Myocardial Infarction
- Cardiac troponin
- CK-MB Mass

Anticoagulation Therapy Monitoring
- PT • aPTT • Platelet-function testing
- Anti-FXa assay for heparin

Heart Tissue Remodeling
- *Galectin-3 • ST2

Heart Failure
- BNP • NT-proBNP

Kidney Disease
- Microalbumin • Creatinine
- Cystatin C • Albumin

*Galectin-3 assay is under development for the ADVIA Centaur® Immunoassay Systems. Not available for sale. Product availability varies by country.
Reference: Adapted from the brochure "Biomarkers: Covering the Continuum of Cardiovascular Disease."
Case Study: In-hospital Patient

- Past medical history includes type 2 diabetes, hypertension, and dyslipidemia. Treatment is prescribed in accordance with current conditions.

- Physical exam: blood pressure (BP) 152/92 mm Hg, P 68/min and regular, and body mass index 33.

- Jugular venous pressure is not visible. There is +1 peripheral edema.

Case Study: In-hospital Patient

Diagnostic Testing

- HbA1c
- BNP/NT-proBNP
- Troponin for risk stratification may be considered
- Albumin:creatinine ratio (ACR)
- eGFR/creatinine/cystatin C

Case Study: Ambulatory Geriatric Patient

ABOUT THE PATIENT:

- 92-year-old male discharged after acute heart failure episode with CKD
- History of hypertension
- Five-part CABG 40 years in the past
- History of diabetes; no smoking or no hyperlipidemia

What testing would you do to follow up on this patient?

HbA1c
NT-proBNP
ACR
(Albumin, Creatinine, Albumin:Creatinine Ratio)
Case Study: Ambulatory Geriatric Patient

What is the goal of treatment?

Balance of kidneys and heart function
Topics We Covered

| Overview | • What is cardiorenal syndrome?
| | • Pathophysiology of how diabetes can impact cardiorenal syndrome |
| The Stats | • Diabetes in the U.S.
| | • Chronic kidney disease in the U.S. |
| Cardiorenal Syndrome | • Diabetes complications: kidney disease
| | • Diabetes complications: cardiovascular disease |
| Guidelines | • American Diabetes Association (ADA)
| | • American Heart Association/American College of Cardiology (AHA/ACC)
| | • National Kidney Foundation |
| Case Studies | • Utilizing what we've learned |
Thank You!

Q & A